Laser plasma acceleration is a potentially disruptive technology: It could be used to build far more compact accelerators and open up new use cases in fundamental research, industry and health. However, on the path to real-world applications, some properties of the plasma-driven electron beam as delivered by current prototype accelerators still need to be refined. DESY's LUX experiment has now made significant progress in this direction: Using a clever correction system, a research team was able to significantly improve the quality of electron bunches accelerated by a laser plasma accelerator. This brings the technology a step closer to concrete applications, such as a plasma-based injector for a synchrotron storage ring.