❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Burning things to make things

Around 80 percent of global energy production today comes from the combustion of fossil fuels. Combustion, or the process of converting stored chemical energy into thermal energy through burning, is vital for a variety of common activities including electricity generation, transportation, and domestic uses like heating and cooking β€” but it also yields a host of environmental consequences, contributing to air pollution and greenhouse gas emissions.

Sili Deng, the Doherty Chair in Ocean Utilization and associate professor of mechanical engineering at MIT, is leading research to drive the transition from the heavy dependence on fossil fuels to renewable energy with storage.

β€œI was first introduced to flame synthesis in my junior year in college,” Deng says. β€œI realized you can actually burn things to make things, [and] that was really fascinating.”

Deng says she ultimately picked combustion as a focus of her work because she likes the intellectual challenge the concept offers. β€œIn combustion you have chemistry, and you have fluid mechanics. Each subject is very rich in science. This also has very strong engineering implications and applications.”

Deng’s research group targets three areas: building up fundamental knowledge on combustion processes and emissions; developing alternative fuels and metal combustion to replace fossil fuels; and synthesizing flame-based materials for catalysis and energy storage, which can bring down the cost of manufacturing battery materials.

One focus of the team has been on low-cost, low-emission manufacturing of cathode materials for lithium-ion batteries. Lithium-ion batteries play an increasingly critical role in transportation electrification (e.g., batteries for electric vehicles) and grid energy storage for electricity that is generated from renewable energy sources like wind and solar. Deng’s team has developed a technology they call flame-assisted spray pyrolysis, or FASP, which can help reduce the high manufacturing costs associated with cathode materials.

FASP is based on flame synthesis, a technology that dates back nearly 3,000 years. In ancient China, this was the primary way black ink materials were made. β€œ[People burned] vegetables or woods, such that afterwards they can collect the solidified smoke,” Deng explains. β€œFor our battery applications, we can try to fit in the same formula, but of course with new tweaks.”

The team is also interested in developing alternative fuels, including looking at the use of metals like aluminum to power rockets. β€œWe’re interested in utilizing aluminum as a fuel for civil applications,” Deng says, because aluminum is abundant in the earth, cheap, and it’s available globally. β€œWhat we are trying to do is to understand [aluminum combustion] and be able to tailor its ignition and propagation properties.”

Among other accolades, Deng is a 2025 recipient of the Hiroshi Tsuji Early Career Researcher Award from the Combustion Institute, an award that recognizes excellence in fundamental or applied combustion science research.

Β© Photo: John Freidah/MIT MechE

Associate Professor Sili Deng

Jessika Trancik named director of the Sociotechnical Systems Research Center

Jessika Trancik, a professor in MIT’s Institute for Data, Systems, and Society, has been named the new director of the Sociotechnical Systems Research Center (SSRC), effective July 1. The SSRC convenes and supports researchers focused on problems and solutions at the intersection of technology and its societal impacts.

Trancik conducts research on technology innovation and energy systems.Β At the Trancik Lab, she and her team develop methods drawing on engineering knowledge, data science, and policy analysis. Their work examines the pace and drivers of technological change, helping identify where innovation is occurring most rapidly, how emerging technologies stack up against existing systems, and which performance thresholds matter most for real-world impact. Her models have been used to inform government innovation policy and have been applied across a wide range of industries.

β€œProfessor Trancik’s deep expertise in the societal implications of technology, and her commitment to developing impactful solutions across industries, make her an excellent fit to lead SSRC,” says Maria C. Yang, interim dean of engineering and William E. Leonhard (1940) Professor of Mechanical Engineering.

Much of Trancik’s research focuses on the domain of energy systems, and establishing methods for energy technology evaluation, including of their costs, performance, and environmental impacts. She covers a wide range of energy services β€” including electricity, transportation, heating, and industrial processes. Her research has applications in solar and wind energy, energy storage, low-carbon fuels, electric vehicles, and nuclear fission. Trancik is also known for her research on extreme events in renewable energy availability.

A prolific researcher, Trancik has helped measure progress and inform the development of solar photovoltaics, batteries, electric vehicle charging infrastructure, and other low-carbon technologies β€” and anticipate future trends. One of her widely cited contributions includes quantifying learning rates and identifying where targeted investments can most effectively accelerate innovation. These tools have been used by U.S. federal agencies, international organizations, and the private sector to shape energy R&D portfolios, climate policy, and infrastructure planning.

Trancik is committed to engaging and informing the public on energy consumption. She and her team developed the app carboncounter.com, which helps users choose cars with low costs and low environmental impacts.

As an educator, Trancik teaches courses for students across MIT’s five schools and the MIT Schwarzman College of Computing.

β€œThe question guiding my teaching and research is how do we solve big societal challenges with technology, and how can we be more deliberate in developing and supporting technologies to get us there?” Trancik said in an article about course IDS.521/IDS.065 (Energy Systems for Climate Change Mitigation).

Trancik received her undergraduate degree in materials science and engineering from Cornell University. As a Rhodes Scholar, she completed her PhD in materials science at the University of Oxford. She subsequently worked for the United Nations in Geneva, Switzerland, and the Earth Institute at Columbia University. After serving as an Omidyar Research Fellow at the Santa Fe Institute, she joined MIT in 2010 as a faculty member.

Trancik succeeds Fotini Christia, the Ford International Professor of Social Sciences in the Department of Political Science and director of IDSS, who previously served as director of SSRC.

Professor Jessika Trancik conducts research on technology innovation and energy systems.
❌
❌