Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Driving American battery innovation forward

Advancements in battery innovation are transforming both mobility and energy systems alike, according to Kurt Kelty, vice president of battery, propulsion, and sustainability at General Motors (GM). At the MIT Energy Initiative (MITEI) Fall Colloquium, Kelty explored how GM is bringing next-generation battery technologies from lab to commercialization, driving American battery innovation forward. The colloquium is part of the ongoing MITEI Presents: Advancing the Energy Transition speaker series.

At GM, Kelty’s team is primarily focused on three things: first, improving affordability to get more electric vehicles (EVs) on the road. “How do you drive down the cost?” Kelty asked the audience. “It's the batteries. The batteries make up about 30 percent of the cost of the vehicle.” Second, his team strives to improve battery performance, including charging speed and energy density. Third, they are working on localizing the supply chain. “We've got to build up our resilience and our independence here in North America, so we're not relying on materials coming from China,” Kelty explained.

To aid their efforts, resources are being poured into the virtualization space, significantly cutting down on time dedicated to research and development. Now, Kelty’s team can do modeling up front using artificial intelligence, reducing what previously would have taken months to a couple of days.

“If you want to modify … the nickel content ever so slightly, we can very quickly model: ‘OK, how’s that going to affect the energy density? The safety? How’s that going to affect the charge capability?’” said Kelty. “We can look at that at the cell level, then the pack level, then the vehicle level.”

Kelty revealed that they have found a solution that addresses affordability, accessibility, and commercialization: lithium manganese-rich (LMR) batteries. Previously, the industry looked to reduce costs by lowering the amount of cobalt in batteries by adding greater amounts of nickel. These high-nickel batteries are in most cars on the road in the United States due to their high range. LMR batteries, though, take things a step further by reducing the amount of nickel and adding more manganese, which drives the cost of batteries down even further while maintaining range.

Lithium-iron-phosphate (LFP) batteries are the chemistry of choice in China, known for low cost, high cycle life, and high safety. With LMR batteries, the cost is comparable to LFP with a range that is closer to high-nickel. “That’s what’s really a breakthrough,” said Kelty.

LMR batteries are not new, but there have been challenges to adopting them, according to Kelty. “People knew about it, but they didn’t know how to commercialize it. They didn’t know how to make it work in an EV,” he explained. Now that GM has figured out commercialization, they will be the first to market these batteries in their EVs in 2028.

Kelty also expressed excitement over the use of vehicle-to-grid technologies in the future. Using a bidirectional charger with a two-way flow of energy, EVs could charge, but also send power from their batteries back to the electrical grid. This would allow customers to charge “their vehicles at night when the electricity prices are really low, and they can discharge it during the day when electricity rates are really high,” he said.

In addition to working in the transportation sector, GM is exploring ways to extend their battery expertise into applications in grid-scale energy storage. “It’s a big market right now, but it’s growing very quickly because of the data center growth,” said Kelty.

When looking to the future of battery manufacturing and EVs in the United States, Kelty remains optimistic: “we’ve got the technology here to make it happen. We’ve always had the innovation here. Now, we’re getting more and more of the manufacturing. We’re getting that all together. We’ve got just tremendous opportunity here that I’m hopeful we’re going to be able to take advantage of and really build a massive battery industry here.”

This speaker series highlights energy experts and leaders at the forefront of the scientific, technological, and policy solutions needed to transform our energy systems. Visit MITEI’s Events page for more information on this and additional events.

© Photo: Gretchen Ertl

Kurt Kelty (right), vice president of battery, propulsion, and sustainability at General Motors, joined MITEI's William Green at the 2025 MIT Energy Initiative Fall Colloquium. Kelty explained how GM is developing and commercializing next-generation battery technologies.

Tackling the energy revolution, one sector at a time

As a major contributor to global carbon dioxide (CO2) emissions, the transportation sector has immense potential to advance decarbonization. However, a zero-emissions global supply chain requires re-imagining reliance on a heavy-duty trucking industry that emits 810,000 tons of CO2, or 6 percent of the United States’ greenhouse gas emissions, and consumes 29 billion gallons of diesel annually in the U.S. alone.

A new study by MIT researchers, presented at the recent American Society of Mechanical Engineers 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, quantifies the impact of a zero-emission truck’s design range on its energy storage requirements and operational revenue. The multivariable model outlined in the paper allows fleet owners and operators to better understand the design choices that impact the economic feasibility of battery-electric and hydrogen fuel cell heavy-duty trucks for commercial application, equipping stakeholders to make informed fleet transition decisions.

“The whole issue [of decarbonizing trucking] is like a very big, messy pie. One of the things we can do, from an academic standpoint, is quantify some of those pieces of pie with modeling, based on information and experience we’ve learned from industry stakeholders,” says ZhiYi Liang, PhD student on the renewable hydrogen team at the MIT K. Lisa Yang Global Engineering and Research Center (GEAR) and lead author of the study. Co-authored by Bryony DuPont, visiting scholar at GEAR, and Amos Winter, the Germeshausen Professor in the MIT Department of Mechanical Engineering, the paper elucidates operational and socioeconomic factors that need to be considered in efforts to decarbonize heavy-duty vehicles (HDVs).

Operational and infrastructure challenges

The team’s model shows that a technical challenge lies in the amount of energy that needs to be stored on the truck to meet the range and towing performance needs of commercial trucking applications. Due to the high energy density and low cost of diesel, existing diesel drivetrains remain more competitive than alternative lithium battery-electric vehicle (Li-BEV) and hydrogen fuel-cell-electric vehicle (H2 FCEV) drivetrains. Although Li-BEV drivetrains have the highest energy efficiency of all three, they are limited to short-to-medium range routes (under 500 miles) with low freight capacity, due to the weight and volume of the onboard energy storage needed. In addition, the authors note that existing electric grid infrastructure will need significant upgrades to support large-scale deployment of Li-BEV HDVs.

While the hydrogen-powered drivetrain has a significant weight advantage that enables higher cargo capacity and routes over 750 miles, the current state of hydrogen fuel networks limits economic viability, especially once operational cost and projected revenue are taken into account. Deployment will most likely require government intervention in the form of incentives and subsidies to reduce the price of hydrogen by more than half, as well as continued investment by corporations to ensure a stable supply. Also, as H2-FCEVs are still a relatively new technology, the ongoing design of conformal onboard hydrogen storage systems — one of which is the subject of Liang’s PhD — is crucial to successful adoption into the HDV market.

The current efficiency of diesel systems is a result of technological developments and manufacturing processes established over many decades, a precedent that suggests similar strides can be made with alternative drivetrains. However, interactions with fleet owners, automotive manufacturers, and refueling network providers reveal another major hurdle in the way that each “slice of the pie” is interrelated — issues must be addressed simultaneously because of how they affect each other, from renewable fuel infrastructure to technological readiness and capital cost of new fleets, among other considerations. And first steps into an uncertain future, where no one sector is fully in control of potential outcomes, is inherently risky. 

“Besides infrastructure limitations, we only have prototypes [of alternative HDVs] for fleet operator use, so the cost of procuring them is high, which means there isn’t demand for automakers to build manufacturing lines up to a scale that would make them economical to produce,” says Liang, describing just one step of a vicious cycle that is difficult to disrupt, especially for industry stakeholders trying to be competitive in a free market. 

Quantifying a path to feasibility

“Folks in the industry know that some kind of energy transition needs to happen, but they may not necessarily know for certain what the most viable path forward is,” says Liang. Although there is no singular avenue to zero emissions, the new model provides a way to further quantify and assess at least one slice of pie to aid decision-making.

Other MIT-led efforts aimed at helping industry stakeholders navigate decarbonization include an interactive mapping tool developed by Danika MacDonell, Impact Fellow at the MIT Climate and Sustainability Consortium (MCSC); alongside Florian Allroggen, executive director of MITs Zero Impact Aviation Alliance; and undergraduate researchers Micah Borrero, Helena De Figueiredo Valente, and Brooke Bao. The MCSC’s Geospatial Decision Support Tool supports strategic decision-making for fleet operators by allowing them to visualize regional freight flow densities, costs, emissions, planned and available infrastructure, and relevant regulations and incentives by region.

While current limitations reveal the need for joint problem-solving across sectors, the authors believe that stakeholders are motivated and ready to tackle climate problems together. Once-competing businesses already appear to be embracing a culture shift toward collaboration, with the recent agreement between General Motors and Hyundai to explore “future collaboration across key strategic areas,” including clean energy. 

Liang believes that transitioning the transportation sector to zero emissions is just one part of an “energy revolution” that will require all sectors to work together, because “everything is connected. In order for the whole thing to make sense, we need to consider ourselves part of that pie, and the entire system needs to change,” says Liang. “You can’t make a revolution succeed by yourself.” 

The authors acknowledge the MIT Climate and Sustainability Consortium for connecting them with industry members in the HDV ecosystem; and the MIT K. Lisa Yang Global Engineering and Research Center and MIT Morningside Academy for Design for financial support.

© Photo: Bob Adams/Flickr

A new study by MIT researchers quantifies the impact of a zero-emission truck’s design range on its energy storage requirements and operational revenue.
❌
❌