Reading view

There are new articles available, click to refresh the page.

Federal budget bill could raise Wisconsin energy costs, threaten renewable energy jobs

An eleventh hour amendment made in the Senate will allow renewable energy projects that begin construction by 2026 or come online by 2027 to receive tax credits, which is slightly less restrictive than a previous version of the bill.

The post Federal budget bill could raise Wisconsin energy costs, threaten renewable energy jobs appeared first on WPR.

The real cost of the ‘Big, Broken Bill’: Why Wisconsin can’t afford to lose our clean energy future

By: John Imes
Rural landscape, red barn, farm, Wisconsin, bicycle

Photo by Gregory Conniff for Wisconsin Examiner

The U.S. Senate is currently working on its version of  the so-called “One Big Beautiful Bill Act”—a deeply misleading attempt to dismantle the Inflation Reduction Act (IRA) and derail America’s clean energy future.

Let’s be clear: This isn’t just political posturing. This bill, backed by fossil fuel interests and already passed in the House, would strip away the very tools Wisconsin families, businesses, farmers and communities are using to lower energy costs, create jobs and build a more resilient future. The damage to our state would be both immediate and long-term.

In Wisconsin alone, 82 clean energy projects are currently in the pipeline. These projects represent not just thousands of jobs and billions in investment — they’re the backbone of a 21st-century economy. From wind turbine manufacturing in Milwaukee’s Menomonee Valley to solar installations in rural communities, Wisconsinites are hard at work powering our future.

If the “Big, Broken Bill” becomes law, it threatens to cancel or delay many of these efforts. Clean energy tax credits would vanish. The Solar for All program and clean manufacturing investments would be eliminated. Tax incentives for electric vehicles, energy-efficient buildings, and sustainable agriculture would be repealed. These aren’t just policy tools — they’re direct investments in our people, places and potential. Many Wisconsin communities have used these credits to launch local projects that reduce taxpayer dollars through direct pay for solar, geothermal and clean vehicles.

And we can’t afford to go backward. Energy demand is skyrocketing — especially with the rapid expansion of AI and data centers. Experts warn electricity bills could jump by 70% in the next five years if we don’t act. Clean, renewable energy remains the cheapest and fastest option to deploy. Gutting these investments would lead to higher prices, more power interruptions and less energy reliability — leaving Wisconsin families and businesses to bear the cost.

Without these programs, household energy costs could rise by up to $400 a year. That’s a hidden tax hike on working families — piled on top of rising costs from tariffs and supply chain disruptions already straining our economy.

Even worse, the bill guts EPA pollution standards and allows major polluters to sidestep environmental compliance. It’s a taxpayer-funded giveaway to fossil fuel interests, trading our health, air and water for short-term corporate profits.

Let’s not forget Wisconsin’s farmers, who were just beginning to benefit from billions in IRA investments for conservation, renewable energy and carbon-smart agriculture. With grant contracts abruptly canceled, many family farms are left holding the bag, having made plans in good faith only to be blindsided.

We can do better. Wisconsin has the talent, tools and environmental leadership tradition to lead the clean energy economy. Clean energy already supports more than 71,000 jobs in our state. With the right investments, we could add 34,000 more and grow our economy by $21 billion by 2050.

We’re also home to over 350 clean energy supply chain companies. With support from IRA tax credits and the Wisconsin Economic Development Corporation (WEDC), we can expand local manufacturing of batteries, solar panels, wind components, EV systems and smart grid technology — positioning Wisconsin as a national clean energy hub.

This is the kind of forward-thinking, common-sense investment we need. It creates good jobs, lowers energy bills, strengthens supply chains and revitalizes communities.

The Senate still has time to act. Let’s urge our lawmakers, regardless of party, to reject this harmful bill and stand with the workers, innovators and families building a cleaner, stronger Wisconsin. Our policies should reflect our shared values of fairness, innovation, resilience and stewardship — not special treatment for polluters.

This isn’t about partisan politics. It’s about economic survival, energy independence and the future we want to leave our children.

It’s time to move forward, not backward, with a smarter stronger, and more sustainable Wisconsin.

GET THE MORNING HEADLINES.

Wisconsin labor groups push back as Biden-era climate law’s hefty price tag makes it a target for GOP cuts

Wisconsin labor and clean energy advocates say a Republican plan in Congress to claw back Biden-era clean energy tax credits could jeopardize thousands of jobs and force some companies to abandon projects.

The post Wisconsin labor groups push back as Biden-era climate law’s hefty price tag makes it a target for GOP cuts appeared first on WPR.

Rooftop panels, EV chargers, and smart thermostats could chip in to boost power grid resilience

There’s a lot of untapped potential in our homes and vehicles that could be harnessed to reinforce local power grids and make them more resilient to unforeseen outages, a new study shows.

In response to a cyber attack or natural disaster, a backup network of decentralized devices — such as residential solar panels, batteries, electric vehicles, heat pumps, and water heaters — could restore electricity or relieve stress on the grid, MIT engineers say.

Such devices are “grid-edge” resources found close to the consumer rather than near central power plants, substations, or transmission lines. Grid-edge devices can independently generate, store, or tune their consumption of power. In their study, the research team shows how such devices could one day be called upon to either pump power into the grid, or rebalance it by dialing down or delaying their power use.

In a paper appearing this week in the Proceedings of the National Academy of Sciences, the engineers present a blueprint for how grid-edge devices could reinforce the power grid through a “local electricity market.” Owners of grid-edge devices could subscribe to a regional market and essentially loan out their device to be part of a microgrid or a local network of on-call energy resources.

In the event that the main power grid is compromised, an algorithm developed by the researchers would kick in for each local electricity market, to quickly determine which devices in the network are trustworthy. The algorithm would then identify the combination of trustworthy devices that would most effectively mitigate the power failure, by either pumping power into the grid or reducing the power they draw from it, by an amount that the algorithm would calculate and communicate to the relevant subscribers. The subscribers could then be compensated through the market, depending on their participation.

The team illustrated this new framework through a number of grid attack scenarios, in which they considered failures at different levels of a power grid, from various sources such as a cyber attack or a natural disaster. Applying their algorithm, they showed that various networks of grid-edge devices were able to dissolve the various attacks.

The results demonstrate that grid-edge devices such as rooftop solar panels, EV chargers, batteries, and smart thermostats (for HVAC devices or heat pumps) could be tapped to stabilize the power grid in the event of an attack.

“All these small devices can do their little bit in terms of adjusting their consumption,” says study co-author Anu Annaswamy, a research scientist in MIT’s Department of Mechanical Engineering. “If we can harness our smart dishwashers, rooftop panels, and EVs, and put our combined shoulders to the wheel, we can really have a resilient grid.”

The study’s MIT co-authors include lead author Vineet Nair and John Williams, along with collaborators from multiple institutions including the Indian Institute of Technology, the National Renewable Energy Laboratory, and elsewhere.

Power boost

The team’s study is an extension of their broader work in adaptive control theory and designing systems to automatically adapt to changing conditions. Annaswamy, who leads the Active-Adaptive Control Laboratory at MIT, explores ways to boost the reliability of renewable energy sources such as solar power.

“These renewables come with a strong temporal signature, in that we know for sure the sun will set every day, so the solar power will go away,” Annaswamy says. “How do you make up for the shortfall?”

The researchers found the answer could lie in the many grid-edge devices that consumers are increasingly installing in their own homes.

“There are lots of distributed energy resources that are coming up now, closer to the customer rather than near large power plants, and it’s mainly because of individual efforts to decarbonize,” Nair says. “So you have all this capability at the grid edge. Surely we should be able to put them to good use.”

While considering ways to deal with drops in energy from the normal operation of renewable sources, the team also began to look into other causes of power dips, such as from cyber attacks. They wondered, in these malicious instances, whether and how the same grid-edge devices could step in to stabilize the grid following an unforeseen, targeted attack.

Attack mode

In their new work, Annaswamy, Nair, and their colleagues developed a framework for incorporating grid-edge devices, and in particular, internet-of-things (IoT) devices, in a way that would support the larger grid in the event of an attack or disruption. IoT devices are physical objects that contain sensors and software that connect to the internet.

For their new framework, named EUREICA (Efficient, Ultra-REsilient, IoT-Coordinated Assets), the researchers start with the assumption that one day, most grid-edge devices will also be IoT devices, enabling rooftop panels, EV chargers, and smart thermostats to wirelessly connect to a larger network of similarly independent and distributed devices. 

The team envisions that for a given region, such as a community of 1,000 homes, there exists a certain number of IoT devices that could potentially be enlisted in the region’s local network, or microgrid. Such a network would be managed by an operator, who would be able to communicate with operators of other nearby microgrids.

If the main power grid is compromised or attacked, operators would run the researchers’ decision-making algorithm to determine trustworthy devices within the network that can pitch in to help mitigate the attack.

The team tested the algorithm on a number of scenarios, such as a cyber attack in which all smart thermostats made by a certain manufacturer are hacked to raise their setpoints simultaneously to a degree that dramatically alters a region’s energy load and destabilizes the grid. The researchers also considered attacks and weather events that would shut off the transmission of energy at various levels and nodes throughout a power grid.

“In our attacks we consider between 5 and 40 percent of the power being lost. We assume some nodes are attacked, and some are still available and have some IoT resources, whether a battery with energy available or an EV or HVAC device that’s controllable,” Nair explains. “So, our algorithm decides which of those houses can step in to either provide extra power generation to inject into the grid or reduce their demand to meet the shortfall.”

In every scenario that they tested, the team found that the algorithm was able to successfully restabilize the grid and mitigate the attack or power failure. They acknowledge that to put in place such a network of grid-edge devices will require buy-in from customers, policymakers, and local officials, as well as innovations such as advanced power inverters that enable EVs to inject power back into the grid.

“This is just the first of many steps that have to happen in quick succession for this idea of local electricity markets to be implemented and expanded upon,” Annaswamy says. “But we believe it’s a good start.”

This work was supported, in part, by the U.S. Department of Energy and the MIT Energy Initiative.

© Credit: Courtesy of the researchers

An example of the different types of IoT devices, physical objects that contain sensors and software that connect to the internet, that are coordinated to increase power grid resilience.

Tackling the energy revolution, one sector at a time

As a major contributor to global carbon dioxide (CO2) emissions, the transportation sector has immense potential to advance decarbonization. However, a zero-emissions global supply chain requires re-imagining reliance on a heavy-duty trucking industry that emits 810,000 tons of CO2, or 6 percent of the United States’ greenhouse gas emissions, and consumes 29 billion gallons of diesel annually in the U.S. alone.

A new study by MIT researchers, presented at the recent American Society of Mechanical Engineers 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, quantifies the impact of a zero-emission truck’s design range on its energy storage requirements and operational revenue. The multivariable model outlined in the paper allows fleet owners and operators to better understand the design choices that impact the economic feasibility of battery-electric and hydrogen fuel cell heavy-duty trucks for commercial application, equipping stakeholders to make informed fleet transition decisions.

“The whole issue [of decarbonizing trucking] is like a very big, messy pie. One of the things we can do, from an academic standpoint, is quantify some of those pieces of pie with modeling, based on information and experience we’ve learned from industry stakeholders,” says ZhiYi Liang, PhD student on the renewable hydrogen team at the MIT K. Lisa Yang Global Engineering and Research Center (GEAR) and lead author of the study. Co-authored by Bryony DuPont, visiting scholar at GEAR, and Amos Winter, the Germeshausen Professor in the MIT Department of Mechanical Engineering, the paper elucidates operational and socioeconomic factors that need to be considered in efforts to decarbonize heavy-duty vehicles (HDVs).

Operational and infrastructure challenges

The team’s model shows that a technical challenge lies in the amount of energy that needs to be stored on the truck to meet the range and towing performance needs of commercial trucking applications. Due to the high energy density and low cost of diesel, existing diesel drivetrains remain more competitive than alternative lithium battery-electric vehicle (Li-BEV) and hydrogen fuel-cell-electric vehicle (H2 FCEV) drivetrains. Although Li-BEV drivetrains have the highest energy efficiency of all three, they are limited to short-to-medium range routes (under 500 miles) with low freight capacity, due to the weight and volume of the onboard energy storage needed. In addition, the authors note that existing electric grid infrastructure will need significant upgrades to support large-scale deployment of Li-BEV HDVs.

While the hydrogen-powered drivetrain has a significant weight advantage that enables higher cargo capacity and routes over 750 miles, the current state of hydrogen fuel networks limits economic viability, especially once operational cost and projected revenue are taken into account. Deployment will most likely require government intervention in the form of incentives and subsidies to reduce the price of hydrogen by more than half, as well as continued investment by corporations to ensure a stable supply. Also, as H2-FCEVs are still a relatively new technology, the ongoing design of conformal onboard hydrogen storage systems — one of which is the subject of Liang’s PhD — is crucial to successful adoption into the HDV market.

The current efficiency of diesel systems is a result of technological developments and manufacturing processes established over many decades, a precedent that suggests similar strides can be made with alternative drivetrains. However, interactions with fleet owners, automotive manufacturers, and refueling network providers reveal another major hurdle in the way that each “slice of the pie” is interrelated — issues must be addressed simultaneously because of how they affect each other, from renewable fuel infrastructure to technological readiness and capital cost of new fleets, among other considerations. And first steps into an uncertain future, where no one sector is fully in control of potential outcomes, is inherently risky. 

“Besides infrastructure limitations, we only have prototypes [of alternative HDVs] for fleet operator use, so the cost of procuring them is high, which means there isn’t demand for automakers to build manufacturing lines up to a scale that would make them economical to produce,” says Liang, describing just one step of a vicious cycle that is difficult to disrupt, especially for industry stakeholders trying to be competitive in a free market. 

Quantifying a path to feasibility

“Folks in the industry know that some kind of energy transition needs to happen, but they may not necessarily know for certain what the most viable path forward is,” says Liang. Although there is no singular avenue to zero emissions, the new model provides a way to further quantify and assess at least one slice of pie to aid decision-making.

Other MIT-led efforts aimed at helping industry stakeholders navigate decarbonization include an interactive mapping tool developed by Danika MacDonell, Impact Fellow at the MIT Climate and Sustainability Consortium (MCSC); alongside Florian Allroggen, executive director of MITs Zero Impact Aviation Alliance; and undergraduate researchers Micah Borrero, Helena De Figueiredo Valente, and Brooke Bao. The MCSC’s Geospatial Decision Support Tool supports strategic decision-making for fleet operators by allowing them to visualize regional freight flow densities, costs, emissions, planned and available infrastructure, and relevant regulations and incentives by region.

While current limitations reveal the need for joint problem-solving across sectors, the authors believe that stakeholders are motivated and ready to tackle climate problems together. Once-competing businesses already appear to be embracing a culture shift toward collaboration, with the recent agreement between General Motors and Hyundai to explore “future collaboration across key strategic areas,” including clean energy. 

Liang believes that transitioning the transportation sector to zero emissions is just one part of an “energy revolution” that will require all sectors to work together, because “everything is connected. In order for the whole thing to make sense, we need to consider ourselves part of that pie, and the entire system needs to change,” says Liang. “You can’t make a revolution succeed by yourself.” 

The authors acknowledge the MIT Climate and Sustainability Consortium for connecting them with industry members in the HDV ecosystem; and the MIT K. Lisa Yang Global Engineering and Research Center and MIT Morningside Academy for Design for financial support.

© Photo: Bob Adams/Flickr

A new study by MIT researchers quantifies the impact of a zero-emission truck’s design range on its energy storage requirements and operational revenue.
❌